Drones taken to Next Level: They balance, dance and are safer than ever!

Drones have come a long way since they were introduced as remote controlled toys. Tiny flyers now have the ability to run autonomously, sense their location and even respond to external disturbances. For instance, several years ago, a fleet of autonomous flyers built a 20-foot-tall (6 meters) wall using 1,500 bricks at the FRAC Center in France, D’Andrea said in his intro in the TED conference held on February.

But behind all these functions is the ability to localize the objects in space. Historically, researchers have relied on external cameras (or, in the older days, remote control) to help position the drones in space. Now, however, D’Andrea and his colleagues at Verity Studios have built an internal localization technology that does away with this equirement.

“There are no external cameras, each flying machine uses onboard sensors to determine its location in space and onboard computation to determine what its actions should be,” D’Andrea said. “The only external commands are high-level ones such as ‘takeoff’ and ‘land.'”

The team has developed a fleet of strange flyers that completely redefine what a traditional plane should look like. For instance, their flattened tail sitter drones can fly forward and hover efficiently. Historically, one big gust of wind could completely disrupt traditional tail sitters. Using their new localization and stabilization technology, the team has developed tail sitters that can be thrown any which way and somehow recover their original position.

Another prototype, called the monospinner, aims to reduce the glitchiness associated with having many moving parts.
“Helicopters are affectionately known as machines with 1,000 moving parts, all conspiring to do you harm,” D’Andrea said.
By contrast, the monospinner has just one moveable part, a propeller, yet can still fly almost anywhere in space.
Another flyer, called the omnicopter, is an exercise in redundancy. Each half wants to spin in opposite directions. That means that when assembled, omnicopter moves equally well in any direction.

The omnicopter is a move toward more reliable drones of the future, he said. If any part fails, whether it’s a motor or a battery pack, or whether half of the drone is completely disabled, the handicapped omnicopter can still fly where it needs to go.

As the final exhibit, D’Andrea demonstrated a swarm of commercially available quadcopters outfitted with twinkling lights and the research team’s localization technology. The swarm of about 20 drones took to the skies and circled around each other, twinkling on and off in a choreographed dance.

“Because each unit knows where it is in space and is self-controlled there is really no limit to their number,” D’Andrea said.

Though the drones do have practical applications, that’s not really the main draw for D’Andrea’s work.

“It’s a continual reminder of how magical and wonderful the universe is, that it allows creative, clever creatures to sculpt it in such spectacular ways. “The fact that this technology has such huge commercial and economic potential is just icing on the cake.”

Watch it here:

Load Comments?